

The bad tropospheric Ozone

Ozone (O₃) Chemistry

Ozone formation occurs in the presence of nitrogen dioxide (NO₂)

 $\blacksquare NO_2 + Sunlight \rightarrow NO + O$

 $\blacksquare O + O_2 \rightarrow O_3$

Ozone destruction occurs in the presence of NO

 $\blacksquare \mathsf{NO} + \mathsf{O}_3 \xrightarrow{} \mathsf{NO}_2 + \mathsf{O}_2$

This natural cycle creates a balanced amount of ozone. (Steady State)

Ozone (O₃) Chemistry

• VOC converts NO back to NO₂.

 $N_{2} + O_{3} \rightarrow NO_{2} + O_{2}$

• NO \rightarrow NO₂

As NO levels drop, Ozone accumulates

Summary reactions for ozone O_3 <u>High Temperatures</u> (internal combustion engines) $N_2(g) + 2O_2(g) \rightarrow 2NO_2(g)$ <u>Sunlight reaction</u> forming ozone

Reversible NO₂(g) + O₂(g) $\langle -- \rangle$ NO(g) + O₃(g)

+ VOC's remove NO and Ozone remains *Non-reversible* $NO_2(g) \ + O_2(g) \ \rightarrow \ NO(g) + O_3(g)$

Thermal Inversion Layers

When temperature increases with altitude, it is referred to as a temperature or thermal inversion. Cool air becomes trapped under warmer layer.

Forms in areas where the flow of air is geographically blocked by mountains

Acid Deposition

- Regional problem
- Sulfuric acid (H₂SO₄) and nitric acid (HNO₃) form from primary pollutants SO₂ (coal) and NOx (vehicles)
- Carried on prevailing winds
- Enters environment as dry acid deposition or acid rain
- Lakes in shallow soil low in limestone become acidic
- Lakes in deep soil high in limestone are buffered

How do we reduce acid deposition?

Getting Rid of PM

✓ Sedimentation (settling out) only works for Coarse particles (above 2.5 µm)

☑Residence time: seconds to one day

☑ Condensation (via rain, fog, etc) works for Fine (2.5 µm) and larger particles

☑Residence time: days to weeks

☑ *Coagulation* (clumping to form larger particles) is the only thing that works for ultrafine particles

 $\ensuremath{\boxtimes}\xspace \mathsf{Residence}$ time: weeks to …?

Health Effects of Particulates

- Exposure to fine particulates can cause up to a 20% permanent decrease in lung capacity
- Living in heavily polluted areas is just as hazardous as living with a smoker
- Death rates among sick, frail, elderly and infants increase on high particulate days

Research courtesy of Dr. Peters, UC Riverside

Clean Air Act 1	970
-----------------	-----

