IMPORTANT TERMS:

- Absolute zero
- Bimetallic strip
- calorie
- Celsius scale
- Fahrenheit scale
- Heat
- Internal energy
- Kelvin scale
- Kilocalorie
- Specific heat capacity
- Temperature
- Thermal contact
- Thermal equilibrium
- thermostat

EQUATIONS:

UNIT III: HEAT

Chapter 21-24

Chapter 21: Temperature, Heat, and Expansion

pera	ture (21.1)
	emperature— the quantity that tells how or or something is.
	Expressed by a number that corresponds to a mark on some chosen scale
	2. Thermometer – device used to measure
	a. Relies on fact that almost all matterwhen temperature increase and when decreases
	b. Usually use mercury or colored alcohol in a glass tube using a scale
В. С	elsius scale
	1. Most widely used temperature scale (International)
	a at temperature of water freezing
	b at boiling point of water
	2. Gap between freezing (0) and boiling (100) divided into 100 equal parts, called
C. F	ahrenheit Scale
	1. Common scale used in U.S.
	a at freezing point of water
	b at boiling point of water
	2. This scale will become obsolete when U.S. goes metric.
D. K	elvin Scale
	1. scale used in scientific research (SI scale)
	2. Degrees same size as the Celsius degree and are called " kelvins ".
	a is assigned to the lowest possible temperature-

b. At absolute zero substance has no kinetic energy to give up

c. Corresponds to _____C on Celsius scale.

- E. Temperature and Kinetic Energy
 - 1. Temperature is related to the **random motions** of the in a substance

- 2. **Ideal Gas** proportional to average _____ energy of molecular translational motion (motion along straight or curved path)
- 3. **Solids and liquids** more complicated but still related to average kinetic energy of molecules.
- 4. Temperature is _____ a **measure of total kinetic energy** (i.e. There is twice as much kinetic energy in 2 liters of boiling water as 1 liter of boiling water)
- II. Heat (21.2)
 - A. **Heat** The **energy** that is **transferred** from one object to another because of a **temperature difference** between them.

 Matter contains 	in many forms,
but it does not contain	

2. Heat is energy transit from body of	
temperature to one of	temperature

S. Energy resulting from heat flow called I energy
B. Thermal contact – when heat flows from one object in with another they are said to be in thermal contact.
1. Heat flows from higher temp substance to lower
a. Heat flows according to temperature
b. Heat does not necessarily flow from substance with more total molecular kinetic energy to one with less.
2. Heat flows from substance into a substance
III. Thermal Equilibrium
·
A. thermal equilibrium – after objects in thermal contact reach the same temperature
B. Thermometer– heat flows between thermometer and substance until have same temp. (thermometer should be small enough so that it does not alter the temperature of substance being measured.
IV. Internal Energy (21.4) $K_A = K_B$
A Energy– the grand total of all energies inside a substance.
includes energy of molecules as well as energy due to forces between molecules
2. A substance does not contain
B. When substance takes in or gives off heat, any of these energies may change.
V. Measurement of Heat (21.5)
A. The unit of heat is defined as the heat necessary to produce some standard, agreed-on temperature change for a specified mass of material
1 (c)– most common unit for heat
a. Defined as: amount of heat required to raise the temperature of 1 of water by 1°C.

	b. kilocalorieused to rate _	(C) = (of	_ calories (Heat unit ten called a Calorie)
	SI system (Internati to measur ie = J	e all forms of e	Units) uses nergy including heat
VI. Specific He	eat Capacity (21.6)		
A. Diffe internal	rent substances hav energy.	e different cap	acities for storing
	.Absorbed energy ovays.	can affect subst	ances in different
V	•		es, increase internal ads and be stored as
			neat required to raise stance bydegree.
VII. The High I	Heat Capacity of Wa	ater (21.7)	
	has m than most commor		acity for storing
1	. Water often used	as	_agent (car radiator)
2	2. Water also takes	a long time to $_$	·
B. This	property of water af	fects	in many places
	. West Coast Mari in winter and		
te	2. Interior of large co emperatures (due to oodies of water)		
VIII. Thermal E	Expansion (21.8)		
	n temperature of so l les jiggle faster ar apart.		
	. Fact used in cons of all kinds.	struction of sub	stances and devices
	a. Concrete, f etc.	illings in teeth,	bridge construction,
		ses, expansion expansion of	of is
B. Diffe	rent materials	at	different rates.

1 metal	s (say one of brass and the other of iron)
	a, When heated - different expansion causes strip to bend into a curve
	b. When cooled – bends in opposite direction
	Metal 1
	Movement Movement
2	practical application of bimetallic strip
	a. back and forth bending of bimetallic coil opens and closes an electrical circuit .
	b. Used in number of applications (room thermostat, refrigerator, automatic chokes on cars, etc.)
IX. Expansion of W	ater (21.9)
A. Almost all	will expand when they are heated.
	es the opposite (water expands when becomes e floats on water)
	s is due to structure of ice to shape of H ₂ O molecules)
	s behavior has great importance to nature– it nts lakes and ponds from freezing easier.
Chapter 22: He	
I. Conduction (22.1)	
1. co i	nductors – materials that conduct well
	a are best conductors (of heat and electricity– because of "loose" outer electrons)
	b. Silver is most, followed by copper, aluminum, and iron

IMPORTANT TERMS:ConductionConductorConvection

Insulator

cooling

EQUATIONS:

Greenhouse effect

Terrestrial radiation

Newton's Law of

Radiant energy Radiation

	Conduction explained by between atoms or molecules and actions of loosely bound electrons.
	3. Atoms vibrate against neighboring atoms and vibration (energy)
	B – are poor conductors of heat (delay transfer of heat) reduces the rate at which heat penetrates.
	1. Liquids and gasses are good
	2 materials are also good insulators (wool, fur, feathers)
	C. Cold – simply the of heat. Cold does not pass through a conductor or insulator, heat does.
II. Co	nvection (22.2)
	A – transfer of energy by movemen of hotter substance.
	Convection occurs in all (whether gas or liquid)
	a. When fluid is heated itbecomes less dense, and rises.
	b. Cooler fluids moves to the
	2. Creates convection
	B – Convection currents stirring the atmosphere produce winds.
	1. Caused by uneven of heat
	2. This phenomenon is often evident at the seashore (results in sea breeze– onshore during day on offshore at night)

III. Radiation	(22.3)
	– the transfer of energy by comagnetic waves
	Any (including heat) transmitted by radiation is called radiant energy
	2. Includes radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays, and gamma rays.
B. All	objects continually emit radiant energy
	1. objects at low temperatures emit waves
	2. Higher-energy objects emit waves oflength.
IV. Absorptio	on of Radiant Energy (22.4)
A. Abs	sorption and reflection are processes.
	Good absorber of radiant energy very little radiant energy
	2. Good absorber appears
B. Go	od reflectors are poor absorbers
	1 colored objects reflect more light and heat than dark colored ones.
	2. In summer, light-colored clothing keeps people cooler
V. Emission	of Radiant Energy (22.5)
	od absorbers are also good emitters; poor absorbers are emitters.
depen	nether a surface plays a role of net emitter or net absorber ands on whether its temperature is above or below the undings.
VI. Newton's	Law of Cooling (22.6)
A. The	e rate of cooling of an object depends on how much the object is than the surroundings.
(wheth approx	wton's Law of Cooling— rate of cooling of an object her by conduction, convection, or radiation) is ximately proportional to the temperature difference en the object and its surroundings

Rate of cooling $\sim \Delta T$.

(E.g. Frozen food will warm up faster in a warm room than in a cold

room)
VII. Global Warming and Greenhouse Effect (22.7)
A. All things
Wavelength of radiation depends on the of the object emitting the radiation
a. High temperature objects (sun) radiate waves
b. Low temperature objects (Earth) radiate waves.
B. Transparency of things depend on of radiation.
1 is transparent to both long and short
 Greenhouse gasses (CO2, water vapor) don't allow long wavelength energy to escape back into space (reflected back to Earth).
3. This causes a warming of the Earth's atmosphere
Chapter 23: Change of Phase I. Evaporation (23.1)
A
gas that takes place at the surface of a liquid.
 Molecules on the surface of liquid that <u>gain</u> enough energy to break free of the liquid.
2. Evaporation is a process
a. Loss of kinetic energy lowers
b. Humans to lower body temperature.
II. Condensation (23.2)
A
1. Condensation is a process.
a. Kinetic energy <u>lost</u> by condensing gas molecules warms the surface they strike.

b. This is why **steam** burns the skin <u>worse</u> than

boiling water of the same temperature.

IMPORTANT TERMS:

Relative humidity

CondensationEquilibriumEvaporationFreezingPhase

Saturated

EQUATIONS:

Boiling

	B. Condensation of the Atmosphere
	1
	2. relative humidity - indicates the amount ofvapor in the air
	3. Fog and Clouds
	a. Warm air and
	b. As it expands it
	c. As it cools, water-vapor molecules begin to stick together and form
III. Ev	aporation and Condensation (23.3)
	A. Equilibrium — when liquid is at a state of balance between evaporation and condensation (normally evaporation and condensation are taking place at the same time)
IV. Bo	iling (23.4)
	A change in phase from a liquid to a gas
	1. Gas that forms beneath the surface causes bubbles
	2. Bubbles buoyed upward to the surface where they escape.
	B pressure can effects the
	boiling point of a liquid
	1. High altitude (lower pressure) boiling point
	Pressure cookers used to increase and increase the boiling point (cooks food faster)
	C. Boiling is a cooling process (like evaporation)
V. Fre	ezing (23.5)- change of phase from to a
VI. En	ergy and Changes of Phase (23.8)
	A. Energy must be to change solid to liquid or liquid to vapor
	B. Energy must be to change phase in direction from gas to liquid to solid.
	C. This process is used in air conditioners and refrigerators.

IMPORTANT TERMS:

- Absolute zero
- Efficiency
- Entropy
- First law of thermodynamics
- Heat engine
- Second law of thermodynamics
- Thermodyncamics

EQUATIONS:

Chapter 24: Thermodynamics

I. Absolute Zero (24.1)

Α.	
No	more energy can be extracted from a substance.

B. Corresponds to scales below.

II. First Law of Thermodynamic (24.2)

A. When the law of energy conservation is applied to thermal systems, called **First Law of Thermodynamics**

1. When	is added to a system, it
	to an equal amount of some
other form of	<u>.</u>

- 2. This energy does one or both of these things:
 - a. **increases** the **internal energy** of the system if it remains in the system
 - b. **does external** _____ if it **leaves** the system

Heat Added = Increase in internal energy + external work done by system

III. Second L	aw or Theimouyna	111105 (24.4)	
		nodynamics– heat wi object to a	
		m a cold object to a hot ut does the second law	•
IV. Heat Eng	ines and the Secor	nd Law (24.5)	
	at engine– any dev y into mechanical	rice that work	the internal
В	of h	eat engines never 100	%
	greater the efficient	ec ency (operating tempe haust temperature)	
	•	ne heat input can be co en without friction)	nverted to
V. Order Ter	nds to Disorder (24.	6)	
		amics states that ener	
		dynamics states that wegenerates into	
	1. "Organized" (us "disorganized (nor	able) energy degenera nusable) energy	ates into
	0,	hat degenerates into no doing the same work a	
	3with each transfo	of energy is rmation	
C. See way:	cond Law of Therm	odynamics can be stat	ed another
	Natural system greater	ns tend to proceed to	ward a state of
	2. You would not e	expect the	to happen
		rgy can be changed by of	to ordered
	4. Tendency of the	e universe tends to	·
VI. Entropy (24.7)		
A disore		the measure of t	he amount of

1. Disorder increases;	_ increases		
2. Second law states that that for a natural pthe long run, entropy always	orocess in		
B. First Law of thermodynamics is a for which no exceptions have been observed.			
C. Second Law of thermodynamics is a			