IMPORTANT TERMS:

- Component
- Projectile
- Resolution
- Resultant
- Satellite
- Scalar quantity
- Vector
- Vector quantity

UNIT I: MECHANICS Chapter 5: Projectile Motion

- I. Vector and Scalar Quantities (5-1)
 - A. Vector Quantity- describes both

es quantities like	(speed and
), and	
is	of velocity vector
ntity- specified by	only
e added, subtracted, mu numbers	Itiplied, and divided like
es:	
2)	
is use direction of a vector q	ed to represent the uantity.
h of arrow (drawn to sc	ale) indicates-
ion of arrow indicates o	direction of vector
<i>tors</i> – simple to add or s	ubtract
→•	
	is is is is added, subtracted, mu numbers es: 2) is use diffection of a vector of the of arrow (drawn to so

C. Combining vectors that are NOT parallel

III. Components of Vectors (5.3) A. Technique to determine the vectors that made up a resultant vector (working backwards) 1. Any vector can be "_____" into two _____ vectors at _____ angles to each other a. These two vectors are called _____ b. Process of determining components is called c. can resolve into _____ and ____components Velocity of stone Vertical component of stone's velocity Horizontal component of stone's velocity IV. Projectile Motion (5.4) A. *projectile*-any object that moves through the air or through space, acted on only by _____ (and air resistance, if any) 1. follow _____ path near Earth's surface 2. Can look at vertical and horizontal components separately. a. Horizontal component for projectile same as ball rolling freely along a level surface (when friction is negligible). Has horizontal velocity 1). Covers equal ____ interval

2). With no horizontal force acting on ball there is <u>no</u> horizontal acceleration (same for a projectile)

 b. Vertical component of a projectile's velocity is like motion of free falling object.
1). Only force in vertical direction is
2). Vertical component changes with
 .
c. horizontal and vertical components are completely of each other.
 Combine to produce variety of curved paths that projectiles follow.
 Path of projectile accelerating in the vertical with constant horizontal velocity forms a
4. When <u>air resistances small</u> enough to neglect (slow moving or heavy projectiles) the curved path are <i>parabolic</i>
V. Projectiles Launched Horizontally (5.5)
A. Horizontal motion is
1.Horizontal component constant (moves same horizontal distance in equal intervals)
2. No horizontal component of acting on it
B. Gravity only acts
1. object downward
 Downward motion of horizontally launched projectile is the <u>same</u> as that for
VI. Projectiles Launched at an Angle (5.6)
A. <u>Vertical</u> distance of <u>horizontal</u> distance
1. If no gravity projectile travels in line
2. Gravity causes projectile to fall below this line the same distance it would have fallen if it were dropped from
15 25

3. Distance below line	
calculated with equation	1

B. Height

- Vertical distance a projectile falls below an imaginary straight line path _____ continually with _____
- 2. Equal to _____ meters

C. Range

- 1. Path of projectile forms _____ (neglecting air resistance
- 2. Horizontal range changes with _____ of launch
 - a. ____ degrees gives maximum range
 - b. Some angles yield same range (i.e. ____ and ____ degrees)

D. Speed- If we take into account air resistance, range is ____ and path ____ true parabola.

