IMPORTANT TERMS:

- Component
- Projectile
- Resolution
- Resultant
- Satellite
- Scalar quantity
- Vector
- Vector quantity

UNIT I: MECHANICS Chapter 5: Projectile Motion

I. Vector and Scalar Quantities (5-1)
A. Vector Quantity- describes both

1. Includes quantities like \qquad (speed and direction), and \qquad
2. speed is \qquad of velocity vector
B. Scalar Quantity- specified by \qquad only
3. can be added, subtracted, multiplied, and divided like ordinary numbers
4. includes:
II. Velocity Vectors (5.2)
A. An \qquad is used to represent the magnitude and direction of a vector quantity.
5. Length of arrow (drawn to scale) indicates-
6. Direction of arrow indicates direction of vector quantity
B. Parallel vectors- simple to add or subtract

C. Combining vectors that are NOT parallel

7. Result of adding two vectors called the
8. Resultant of two perpendicular vectors is the \qquad of the rectangle with the two vectors as sides
9. Use simple three step technique to find resultant of a pair of vectors that are at \qquad angles to each other.

a. First-

b. Second-draw a \qquad projection of each vector with dashed lines to form a rectangle
c. Third-draw the \qquad from the
point where the two tails are \qquad

Step 1

Step 2

Step 3
4. Adding vectors not at right angles
a. Construct \qquad
b. Construct with two vectors as sides
c. Resultant is the \qquad

5. Adding vectors when parallelogram is a square (two vectors of equal length and at right angles to each other)
a. Construct a \qquad
b. The length of diagonal is \qquad or
\qquad times either of the sides
c. Resultant is \qquad times either of the vectors

III. Components of Vectors (5.3)

A. Technique to determine the vectors that made up a resultant vector (working backwards)

1. Any vector can be " \qquad " into two
\qquad vectors at \qquad angles
to each other
a. These two vectors are called \qquad
b. Process of determining components is called
c. can resolve into \qquad and
\qquad components

IV. Projectile Motion (5.4)
A. projectile-any object that moves through the air or through space, acted on only by \qquad (and air resistance, if any)
2. follow \qquad path near Earth's surface
3. Can look at vertical and horizontal components separately.
a. Horizontal component for projectile same as ball rolling freely along a level surface (when friction is negligible). Has \qquad horizontal velocity
1). Covers equal \qquad in equal \qquad interval
2). With no horizontal force acting on ball there is no horizontal acceleration (same for a projectile)
b. Vertical component of a projectile's velocity is like motion of free falling object.
1). Only force in vertical direction is
2). Vertical component changes with
c. horizontal and vertical components are completely \qquad of each other.
1). Combine to produce variety of curved paths that projectiles follow.
4. Path of projectile accelerating in the vertical with constant horizontal velocity forms a
5. When air resistances small enough to neglect (slow moving or heavy projectiles) the curved path are parabolic
V. Projectiles Launched Horizontally (5.5)
A. Horizontal motion is \qquad
1.Horizontal component constant (moves same horizontal distance in equal \qquad intervals)
6. No horizontal component of \qquad acting on it
B. Gravity only acts \qquad
7. object \qquad downward
8. Downward motion of horizontally launched projectile is the same as that for \qquad
VI. Projectiles Launched at an Angle (5.6)
A. Vertical distance \qquad of horizontal distance
9. If no gravity projectile travels in \qquad line
10. Gravity causes projectile to fall below this line the same distance it would have fallen if it were dropped from \qquad ,

11. Distance below line calculated with equation
B. Height
12. Vertical distance a projectile falls below an imaginary straight line path \qquad continually with \qquad
13. Equal to \qquad meters

14. Path of projectile forms \qquad (neglecting air resistance
15. Horizontal range changes with \qquad of launch
a. \qquad degrees gives maximum range
b. Some angles yield same range (i.e. \qquad and
\qquad degrees)

D. Speed- If we take into account air resistance, range is
\qquad and path \qquad true parabola.

