IMPORTANT TERMS:

- Action force
- Interaction
- Newton's third law
- Reaction force

EQUATIONS:

$$\rho = mv$$
$$Ft = \Delta(mv)$$

 $(\text{net } mv)_{before} = (\text{net } mv)_{after}$

UNIT I: MECHANICS Chapter 8: Momentum

i. Momentum (8.1)
A. momentum- " in motion"
1. Mass of an object multiplied by its velocity
Momentum = mass x velocity
A moving object can have large momentum with either or
B. An object at rest has momentum (velocity = 0)
II. Impulse Changes Momentum (8.2)
A. The greater the force on an object the greater the change in
Apply force over longer and produce greater change in momentum
a. Force x time =
b. <i>Impulse = change in</i>
2. The <u>greater</u> the impulse on something, the greater the change in
B. Increasing Momentum
1. To increase momentum of object apply greatest force for as
2. Impact forces- means average force of impact
a. Impact refers to a (measured in N)
b. Impulse -Impact force x time (measured in N-s)
C. Decreasing Momentum
Longer impact time reduces of impact and <u>decreases</u> the resulting

2. Extend impact time to <u>reduce</u> impact
a. evident in design of cars
b. evident when looking at floors (concrete, wood, etc.)
II. Bouncing (8.3)-impulses are greater when bouncing takes place
V. Conservation of Momentum (8.4)
A. To accelerate an object you must apply a to it
B. To change momentum of an object, you must exert an to it.
C. In either case, the force or impulse must be exerted by something the object.
1 forces won't work
2. Internal forces come in balancedand cancel within the object
3. If no external force is present - no change in is possible.
D. Cannon example
1. Cannon at rest—momentum = (velocity is 0)
2. After firing - net momentum (or total momentum) is still
E. Momentum is a vector quantity
1. has both and
2. Therefore they can be
3. Magnitude of cannon ball and cannon are equal and opposite in direction (they cancel each other)
4. If no net force or net impulse acts on a system the momentum of that system cannot change
5. Law of conservation of momentum-
In the absence of an external force, the momentum of a system remains unchanged
V. Collisions (8.5)
A. Elastic Collisions- when objects collide without being-

	1. Momentum is _ object to second.		from first			
	2. Sum of mome after each collision		the same <u>before</u> and			
=	Before Collision	Collision	After Collision			
a						
b	←					
c <u> </u>			=			
B. Ine	lastic Collisions 1. Inelastic Collis generate heat dur tangled or couple	ring the collision (ecome distorted and (objects become			
	υ= 4 m/s	υ=0	00			
		3 MM NO	00			
	= 00		υ= 2 m/s			
 You can predict velocity of the coupled objects after impact 						
net momentum before collision = net momentum after collision						
	Or in a	equation form				
	3. Most collisions usually involve some external					
	a. Most ext during colli					
	b collisions	may	play a role after			

C. Perfect elastic collisions are n	ot common in everyday world		
1 is us	is usually generated		
	Perfectly elastic collisions commonplace at a level (e.g. electrically		
charged particles)			
VI. Momentum Vectors (8.6)			
A. Momentumdon't move along the same			
1. Use	_ to analyze		
2. Momentum is the	of two objects		
+			