Name \qquad Date \qquad Period \qquad

Worksheet: Equation Review

CHAPTER 5: PROJECTILE MOTION
Directions: Answer the following questions based on reading from Chapter 3 (pgs. 68-85) and/or from notes in class.
equations: $\quad v=v_{0}+a t \quad d=\frac{1}{2} a t^{2} \quad R=\sqrt{A^{2}+B^{2}}$

$$
v=v_{0}+g t \quad d=\frac{1}{2} g t^{2} \quad t=\sqrt{\frac{2 d}{g}}
$$

QUESTIONS:

1. How does a vector quantity differ from a scalar quantity?
2. How does the downward component of the motion of a projectile compare with the motion of a free fall?
3. What do we call a projectile that continually "falls" around the Earth?
4. Calculate the resultant velocity of an airplane that normally flies at $200 \mathrm{~km} / \mathrm{hr}$ if it encounters a $50 \mathrm{~km} / \mathrm{hr}$ tailwind. If it encounters a $50 \mathrm{~km} / \mathrm{hr}$ headwind.
5. Calculate the resulting speed of an airplane with an airspeed of $120 \mathrm{~km} / \mathrm{hr}$ pointing due North when it encounters a wind of $90 \mathrm{~km} / \mathrm{hr}$ directed from the west. (HINT: use Pythagorean theorem)
6. A bird flies at a speed of $10 \mathrm{~m} / \mathrm{s}$ in still air.
a. If he flies into a $2 \mathrm{~m} / \mathrm{s}$ headwind, how fast will he be traveling relative to the ground?
b. Relative to the ground below, how fast will he travel when he experiences a $2 \mathrm{~m} / \mathrm{s}$ tailwind?
c. While flying at $10 \mathrm{~m} / \mathrm{s}$, suppose that he encounters a $10 \mathrm{~m} / \mathrm{s}$ cross wind (coming at right angle to his heading). What is his speed relative to the ground below?
7. A boat is rowed at $8 \mathrm{~km} / \mathrm{hr}$ directly across a river that flows at $6 \mathrm{~km} / \mathrm{hr}$.
a. What is the resultant speed of the boat?
b. How fast and in what direction can the boat be rowed to reach a destination directly across the river?
8. Harry and Angela look from their balcony to a swimming pool below that is 15 m from the bottom of their building. They estimate the balcony is 45 m high and wonder how fast they would have to jump horizontally to succeed in reaching the pool. What is your answer?
9. Harry accidentally falls out of a helicopter that is traveling at $15 \mathrm{~m} / \mathrm{s}$. He plunges into a swimming pool 2 seconds later. Assuming no air resistance, what was the horizontal distance between Harry and the swimming pool when he fell from the helicopter?
10. A bowling ball is moving at $10 \mathrm{~m} / \mathrm{s}$ when it rolls off the edge of a tall building. What is the ball's speed one second later? (Hint: Think vectors)
