|         | _    |         |
|---------|------|---------|
| Name    | Date | Period  |
| INGILIC | Daic | 1 01100 |

## Chapter 6 Concept Review

| ייני ווייניוט וויינייני אויינייני ווייניינייני וויינייניינייניינייניינייניינייניינייניי | estions using your notes a         | па техтроок                     |  |  |  |
|-----------------------------------------------------------------------------------------|------------------------------------|---------------------------------|--|--|--|
| 1deper                                                                                  | nds on net force.                  |                                 |  |  |  |
| 2. Objects acceleration is directly prop                                                | portional to the net               | acting on it.                   |  |  |  |
| 3. Acceleration depends on                                                              | ·                                  |                                 |  |  |  |
| 4. acceleration produced is                                                             | proportion                         | nal to the mass.                |  |  |  |
| 5. Inversely– means that the two valu                                                   | es change in                       | directions.                     |  |  |  |
| 6. Newton's Second Law states:The _                                                     |                                    | _ produced by a net force on an |  |  |  |
| object is directly                                                                      | to the magnitude of t              | he net force, is in the same    |  |  |  |
| direction as the net force, and is inver                                                | rsely proportional to the _        | of the object.                  |  |  |  |
| 7. Using units of(                                                                      | N) for force,                      | for mass (kg), and              |  |  |  |
| per second square                                                                       | d (m/s2) for acceleration, v       | we get the new equation.        |  |  |  |
| accei                                                                                   | $leration = \frac{netforce}{mass}$ |                                 |  |  |  |
| 3is a force tha                                                                         | it acts on materials that are      | e in contact with each other.   |  |  |  |
| 9. friction acts in opposite                                                            | to oppose mo                       | tion.                           |  |  |  |
| 10. Friction mainly due to in the two surfaces.                                         |                                    |                                 |  |  |  |
| 11. Friction of liquids appreciable eve                                                 | n at low                           | <del>.</del>                    |  |  |  |
| 12 (fri                                                                                 | ction acting on something          | moving through air) is common   |  |  |  |
| form of fluid friction.                                                                 |                                    |                                 |  |  |  |
| 13. When friction is present, an objec<br>outside force is applied to it.               | t may move with a constar          | nt even when                    |  |  |  |
| 14. Pressure– amount of                                                                 | per unit                           | <u>_</u> .                      |  |  |  |

| 15                             | _ showed falling objects accelerate equally, regardless of their masses |              |                                         |    |
|--------------------------------|-------------------------------------------------------------------------|--------------|-----------------------------------------|----|
| 16                             | believed that an object weighing tens times as much would fall ten      |              |                                         |    |
| times faster (disproved b      | y Galileo and                                                           | others- Ga   | alileo's famous demonstration at Leanir | ıg |
| Tower of Pisa)                 |                                                                         |              |                                         |    |
| 17. Equation: F <sub>g</sub> = | x                                                                       |              |                                         |    |
| 18. Equation: F <sub>g</sub> = | . X                                                                     |              |                                         |    |
| 19. Equation: a =              |                                                                         |              |                                         |    |
| 20. When is                    | also considere                                                          | ed, the acce | eleration of any object is the          |    |
| 21. Air resistance             |                                                                         | the net fo   | orces acting on a falling object.       |    |
| 22. When air resistance        | equals                                                                  |              | force on falling object (force of       |    |
| gravity- also called weigl     | nt) then net force                                                      | ce is        | and no further acceleration occurs      | 3. |
| 23. terminal speed– whe        | n                                                                       |              | terminates                              |    |
| 24. When consider direct       | ·                                                                       |              | ng objects) we call this maximum speed  | t  |
|                                |                                                                         |              | speeds, but very noticeable at          |    |
| speeds.                        |                                                                         |              |                                         |    |